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Abstract— A new, efficient finite difference frequency
domain (FD-FD) subgrid technique is introduced. Based
on a robust direct orthogonalization of the FD-FD grid,
the method does not require any additional interpolation
or correction terms. This yields a significant reduction
in both CPU time and storage requirements as compared
with the usual graded mesh techniques. The rigorous S-
parameter calculation of 3D dielectric or metallic post el-
ement examples in rectangular waveguides demonstrates
the versatility of the method. Comparisons with mea-
surements and calculated reference values verify the pre-
sented technique and show its high dynamic range.

I. INTRODUCTION

HE finite difference method [1] has found widespread

application for the electromagnetic simulation of a
great variety of waveguiding structures. Although its
time domain (FD-TD) version has received higher pop-
ularity in recent years, the finite difference frequency
domain (FD-FD) method has turned out to be a reli-
able technique for solving both complicated eigenvalue
[2], [3], [4] and waveguide scattering problems [5], [6]. As
usual microwave structures, such as obstacles in waveg-
uides, often include regions of very different field inten-
sity, the numerical effort both in CPU time and storage
requirements can be high for accurate results if a uni-
form mesh is used. For rigorous and efficient simulations
with the FD-FD method, therefore, an adequate subgrid
technique is highly desirable.

Common graded mesh techniques [4], still lead to an
unnecessarily fine mesh discretization in homogeneous
areas of low field gradients, due to the topology of the
grid. Locally refined meshes have been reported for
the FD-TD technique in [7] - [10]. These FD-TD sub-
grid algorithms, however, require additional interpola-
tion schemes at the grid-interfaces which can reduce the
flexibility. Moreover, for the FD-FD method, no local-
ized subgrid techniques are available so far.

The present paper introduces a FD-FD subgrid tech-
nique which utilizes the idea of a direct orthogonal-
ization procedure successfully applied for the FD-TD
method by the authors just recently [11]. The new tech-
nique does not require any additional interpolation or
correction terms, and the refined mesh can be adapted
most favorably to the structure where it is built up only

in regions which need it directly. This makes the method
very flexible, stable and efficient.

Fig. 1. Simple example for the 3D subgrid technique: Transi-
tion from a coarse grid to a subgrid within a waveguide. The
contour lines of the subgrid are deformed such that the or-
thogonality with the magnetic field is performed.

II. THEORY

Like in [11], first a recursive grid-generation proce-
dure is used based on a progressive 2 : 1 cell ratio for
the subgrids. From the allocated cells, two grids are de-
rived (the main and the dual grid). The main grid is
defined by the corners, the dual grid is defined by the
centers of the allocated main cells. The main grid is
directly orthogonalized against the dual grid [11]. An
example for the three dimensional (3D) case is shown in
Fig. 1, where the orthogonalization of the main grid is
demonstrated.

The grids of the 3D subgrid discretization defines lo-
cal basis-systems (dy,ds,ds), and the electric and the
magnetic fields are represented by contra-variant com-
ponents e and hl, where x designates the correspond-
ing component and L the grid level. An adequate con-
dition forces each cell of level L to have neighbor cells
in the levels L — 1, L and L + 1 only.

The electric field is given by
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where Ly > Lo, L3, L4, L5, 1, j, k denote the position
of the grids in the mesh, and g;; is the i—th diagonal
element of the metric tensor with g;; = d@; - d;; A is the
area interspersed with the electric field. The magnetic
field is obtained analogously.

This subgrid technique is stable, efficient and precise.
Instead of using the dual grid of [11] (where the dual grid
points are defined by the center points of the allocated
main cells), a further improvement of the dynamic range
is possible by an adequate shift of the dual grid points
(e.g. P; in Fig. 1) towards the corners of the main grid
(e.g. point P, in Fig.1). This enforces the orthogonality
at a lover level of deformation.
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Fig. 2. Simple example of an empty homogeneous rectangular

waveguide including a 3D subgrid region which does not bor-
der on the waveguide walls. The main grid (not shown) is
discretized by 10 X 10 in transverse direction.

Return loss of the first two modes at the empty waveguide
including the 3D subgrid region.

III. RESuLTS

The described 3D FD-FD subgrid technique has been
tested first at the simple example of an empty homoge-
neous rectangular waveguide including a subgrid region
(Fig. 2) which does not border on the waveguide walls.
The main grid has been discretized in transversal direc-
tion by 10 x 10. For demonstrating the reliability of the
presented subgrid technique, the return loss for the first
two modes at the waveguide including the subgrid re-
gion has been calculated within the frequency range of
fer-2x f., where f. denotes the corresponding cutoff
frequencies. The return loss for both modes is the same
and is better than -40 dB.
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Fig. 3. Rectangular waveguide with dielectric insert. a=22.86

mm, b=10.16 mm, c=12 mm, d=6 mm, e,=8.2. (a) Scatter-
ing parameter S11, comparison between the FD-FD technique
with a graded mesh (diamonds) and the FD-FD subgrid tech-
nique. Discretization in the cross section of the insert: 50 x 1
(graded mesh), 40 x 1 (subgrid). (b) Reference values by own
calculations with the FD-TD technique and by measurements
of [12].

Fig. 3a shows the results of a rectangular waveguide
with a 3D dielectric insert for which reference measure-

0-7803-4471-5/98/$10.00 (c) 1998 IEEE



ments are available [12]. The chosen subgrid involves
the inner structure of the dielectric block as well as its
direct vicinity (Fig. 3b). The scattering parameter val-
ues S1; calculated with (dashed line) the subgrid and a
graded mesh technique (diamonds) are plotted in Fig.
3a. Fig. 3b shows available measured results [12] and
the comparison with the FD-TD technique [13] demon-
strating the accuracy of the presented method.
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Fig. 4. Rectangular waveguide with a displaced metallic post:

a=22.86 mm, b=10.16 mm, c1=12.86 mm, c2=1 mm, d=4
mm.
Comparison of the scattering parameter S1; calculated by the
FD-FD subgrid technique with results obtained with a FD-FD
graded mesh method (diamonds). Discretization in the cross
section of the post: 50 x 1 (graded mesh), 40 x 1 (subgrid).
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Fig. 5. Compensated magic tee structure. Dimensions in mm:
Waveguide 12.7 x 25.4 , 1=8.255, d=3.175, k=3.556, w=8.382,
t=0.7937, p=0. Height of the post element: 12.7

The next example (Fig. 4) is a rectangular waveguide
with a displaced rectangular metallic post. The scatter-
ing parameter S1; calculation shows again that identical
results are obtained both for the FD-FD technique with
a graded mesh (diamonds) and the FD-FD subgrid tech-
nique which leads to a reduced level of discretization.

Fig. 5 shows a compensated magic tee structure
which has been calculated for demonstrating the appli-
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cability of the presented technique also for more com-
plicated 3D cases. The post element and its immediate
vicinity have been discretized by using a subgrid. Com-
parisons have been made with own calculations by a
FD-TD technique where a uniform mesh has been ap-
plied and the post boundary has been discretized by a
staircase approximation. It is demonstrated that - due
to the high dynamic range and the finer discretization
in the critical areas - the presented subgrid technique
is more accurate and the resonant peaks in the return
loss behavior are clearly detectable. This is particularly
true for the Si; values (upper plot in Fig. 6) where the
influence of the post element is more severe than for the
Si4- and Sy-plots showing rather good agreement.
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Fig. 6. Compensated magic tee structure of Fig. 5. Comparison
of the scattering parameters S44, S41, S11 calculated by the
FD-FD subgrid technique with results obtained by a FD-TD
method (diamonds). Discretization for the subgrid technique:
Ca. 400 cuboids in the waveguide cross-section, 968 cuboids
with subgrid level 1 in the post and iris sections.

IV. CONCLUSION

A new, fast and stable FD-FD subgrid technique is de-
scribed for the rigorous analysis of 3D microwave struc-
tures. The method does not require any additional in-
terpolation or correction terms. This yields a significant
reduction in both CPU time and storage requirements.
Comparisons with measurements and calculated refer-
ence values verify the presented technique and show its
high dynamic range.
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